Finite groups whose Sylow subgroups are abelian
نویسندگان
چکیده
منابع مشابه
Classification of finite simple groups whose Sylow 3-subgroups are of order 9
In this paper, without using the classification of finite simple groups, we determine the structure of finite simple groups whose Sylow 3-subgroups are of the order 9. More precisely, we classify finite simple groups whose Sylow 3-subgroups are elementary abelian of order 9.
متن کاملfinite groups whose minimal subgroups are weakly h*-subgroups
let $g$ be a finite group. a subgroup $h$ of $g$ is called an $mathcal h $ -subgroup in $g$ if $n_g (h)cap h^gleq h$ for all $gin g$. a subgroup $h$ of $g$ is called a weakly $mathcal h^ast $-subgroup in $g$ if there exists a subgroup $k$ of $g$ such that $g=hk$ and $hcap k$ is an $mathcal h$-subgroup in $g$. we investigate the structure of the finite group $g$ under the assump...
متن کاملFinite Groups Whose «-maximal Subgroups Are Subnormal
Introduction. Dedekind has determined all groups whose subgroups are all normal (see, e.g., [5, Theorem 12.5.4]). Partially generalizing this, Wielandt showed that a finite group is nilpotent, if and only if all its subgroups are subnormal, and also if and only if all maximal subgroups are normal [5, Corollary 10.3.1, 10.3.4]. Huppert [7, Sätze 23, 24] has shown that if all 2nd-maximal subgroup...
متن کاملA New Finite Simple Group with Abelian 2-sylow Subgroups.
A 2-Sylow subgroup of J is elementary abelian of order 8 and J has no subgroup of index 2. If r is an involution in J, then C(r) = (r) X K, where K _ A5. Let G be a finite group with the following properties: (a) S2-subgroups of G are abelian; (b) G has no subgroup of index 2; and (c) G contains an involution t such that 0(t) = (t) X F, where F A5. Then G is a (new) simple group isomorphic to J...
متن کاملCohomology of groups, abelian Sylow subgroups and splendid equivalences
Let G be a finite group and let R be a complete discrete valuation domain of characteristic 0 with residue field k of characteristic p and let S be R or k. The cohomology rings H∗(K,S) for subgroups K of G together with restriction to subgroups of G, transfer from subgroups of G and conjugation by elements of G gives H∗(−, S) the structure of a Mackey functor. Moreover, the group HSplenS(K) of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1971
ISSN: 0021-8693
DOI: 10.1016/0021-8693(71)90044-5